2-Walk-Regular Dihedrants from Group-Divisible Designs
نویسندگان
چکیده
In this note, we construct bipartite 2-walk-regular graphs with exactly 6 distinct eigenvalues as the point-block incidence graphs of group divisible designs with the dual property. For many of them, we show that they are 2-arc-transitive dihedrants. We note that some of these graphs are not described in Du et al. (2008), in which they classified the connected 2-arc transitive dihedrants.
منابع مشابه
Semiregular group divisible designs whose duals are semiregular
ABSTRAC"T A construction method for semiregular group divisible designs is given. This method can be applied to yield many classes of (in general, non-symmetric) semiregular group divisible designs whose duals are semiregular group divisible. In particular, the method can be used to construct many classes of transversal designs whose duals are serniregular group divisible designs, but not trans...
متن کاملOn dihedrants admitting arc-regular group actions
We consider Cayley graphs Γ over dihedral groups, dihedrants for short, which admit an automorphism group G acting regularly on the arc set of Γ . We prove that, if D2n ≤G≤ Aut(Γ ) is a regular dihedral subgroup of G of order 2n such that any of its index 2 cyclic subgroups is core-free in G, then Γ belongs to the family of graphs of the form (Kn1 ⊗ · · · ⊗Kn )[Kc m], where 2n= n1 · · ·n m, and...
متن کاملNew constructions of divisible designs
261 Davis, J.A., New constructions of divisible designs, Discrete Mathematics 120 (1993) 261-268. A construction is given for a (p2"(p+l),p,p2"+ 1(p+l),p2"+ ,p"(p+l)) (pa prime) divisible difference set in the group H x z~.+, where His any abelian group of order p+ 1. This can be used to generate a symmetric semi-regular divisible design; this is a new set of parameters for .l. 1 ;<'0, and thos...
متن کاملA New Method for Construction of MV-optimal Generalized Group Divisible Designs with two Groups
In this article, we consider the construction of generalized group divisible designs with two groups (GGDD (2)) from balanced incomplete block designs (BIBD). We also discuss MV-optimality of these designs.
متن کاملClass-Uniformly Resolvable Group Divisible Structures I: Resolvable Group Divisible Designs
We consider Class-Uniformly Resolvable Group Divisible Designs (CURGDD), which are resolvable group divisible designs in which each of the resolution classes has the same number of blocks of each size. We derive the fully general necessary conditions including a number of extremal bounds. We present some general constructions including a novel construction for shrinking the index of a master de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 23 شماره
صفحات -
تاریخ انتشار 2016